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ON BODIES 0.F ROTATION IN MACH 1 FLOW OF AN IDEAL GAS 

V. N. Diyesperov and 0. S. Ryzhov 

The first solution of the'problem of asymptotic modes of damping of pertur- 
bations at large distances from a finite body at Mach 1 flow was given in [l, 21, 
where the gas was assumed to be ideal, that is, nonviscous and thermally non- * 

conducting. Under the assumption of a self-semilar form of the desired integral, 
those two papers presented a system of ordinary differential equations which 
describes the entire velocity field of the flow. The derived equations were inte- 
grated by numerical methods.1 In [31, the solution (in its parametric representation) 
was written in the form of simple algebraic functions. The value of the exponent 
appearing in the definition of the self-similar variable was also found in [31. The 
parametric form of tlie solution was also indicated in 41. 
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In [ 5, 61, corrections were determined for the asymptotic lormulas. The 
solution of. this problem makes it possible not only to calculate more accurately the 
parameters of the gas, but also to find the relationship between them and the 
resistance force acting on the body. It is significant when one replaces the body 
around which the flow is taking place with a dipole, the resistance force must be- 
come zero. Below, we shall give a solution for the velocity field of a source and 
enabling u s  to calculate the effect of that force. It turns out that the source and 
the dipole perburb a uniform Mach 1 flow ahead of a shock front to the same extent. 
The parameters of the flows that arise due to the effect of these phenomena differ 
only in the region behind shock. 

We shall assume that far  away from the body of rotation, the motion of the 
ideal gas (as defined above) is isentropic. In fact, the flow is intersected by a 
shock wave [2, 31, but i ts  intensity is small, and the change caused by it in the 
entropy is very much smaller than the qumtities that are retained in the approxi- 
mation to be considered below. Since a flow originating at infinity is uniform, it 
will (under the assumption made) be irrotational everywhere. We can then trans- 
form from a system of Euler,equation to a single par t s1  differential equation for 
the velocity potential. 

- /165 

Let x and r denote cylindrical coordinates, let vx and vr denote the pro- 
jections of the velocity vector along these axes, let9 denote the potential, let a 
denote the speed of sound and let w be the specific enthaply. As we know 71, 

I 
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Henceforth, an asterisk' refers to the parameters of a gas in a critical state. 
To determine, from the Bernoulli inFgra1 (2), the speed of sound in terms of 
the derivatives of the potential withrespect to the coordinates, we need to use 
the equation of state of the medium; it gives the pressure as  a function of the 
specific volume V (or density p = 1 / V )  and the specific entropy s. Increase in 
the entropy of the front of a weak shock wave is proportional to the cube of the 
wave amplitude [?'I, a quantity conveniently represented by the difference in the 
specific enthalpies on the two sides of the surface of discontinuity. Henceforth, 
we can confine ourselves to the approximation 

In accordance with the first  law of thermodynamics, in an adiabatic process 
the increase in the specific enthalpy dw = Vdp, from which follows that 

Formula (4) enables us $0 express the coefficient in the expansion (3) for the 
speed of sound in terms of a'derivative describing the Poisson adiabate for  a' 
moving gas. By using Bernoulli's integral, we can now transform Eq. (1) to 
a single velocity potential 9. We note that, for a perfect gas with ratio of 
specific heat capacities x ,  the relation between the speed of sound and the specific 
enthalpy is given by the simple formula Q = I[ ( x  - 1) w], in which the entropy 
does not occur. _ _ ~  _ -  - -  

I 

Let us suppose that the velocity of the perturbed flow is equal in magnitude 
to the critical velocity a, and is directed along the x-axis. Let us seek the 
solution of Eq. (1) in the forom of the expansion 

The function cpwo is an integral of Kdrmh 's  approximate equation 131 and it 
gives the asymptotic modes of damping of perturbations fa r  away from a body 
streamlined hy a uniform flow which is Mach 1 at infinity 1, 21. As shown in 
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[ 31, the param ei ter n of expansion (5) is equal to 4/7, and the first power is 
= -y7. The ction f-m satisfies the ordinary differential equaOion v I 

.I _-- . 

For the exact solution df this equation in a mixed subsonic and supersonic . 
region situated in front of the shock front, it is convenient to use the parametric 
formulas 

developed in 131. The choice of the constant bl remains arbitrary. In the region 
behind the shock front, we may take, in analogy with (7), 

I E = b20--6/7 (1 -f- (J) -v7, 

The value of the constant b2 depends on the value of the constant bl and is 
found by piecing together the integrals (7) and (8) on the shock wave front. 

Let us estimate first  of all the accuracy of the approximation used. In 
formula (3) for the speed of ‘sound, the discarded terms are of $he order of 

r -12’7. They must be taken into account in the derivation of the recursion 
equations from which one fiqds functions c p ~  and fO with w i  < 4 7 ,  but, in our 
case, these functions are of no interest. ! 

Suppose now that we denote by v = grad cp the vector of velocity of the gas 
particles and by T the gas temperature. In accordance with Crocco’s equation, 

v X curl = T grad s, 

since, in flows that equalize out at infinity, Bernoulli‘s constant does not change 
on shifting from one streamline to another 171. If the motion of the gas has 
axial symmetry, the vector ,curl v is orthogonal to the velocity vector v. There- 
fore, 
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On crossing the shock wave front, the change in pressure is of the same 
order a s  the change in the absolute value v of the particle velocity, that is, it is 
proportional to r-6/7. The increase in the entropy is proportional to r 

given by the asymptotic equation z = gzr"7, where E2 = const. The entropy gradient, 
and with it lcurlvl , approaches zero at  the sanie rate as r-25/7 when t-* 00. 
This estimate asserts that functions q 6 ) i  and f m i  with o)i > -8/7 may be deter- 
mined when we assume that $he fldw is irrotational. 

-18/7 
/16 7 At a great distance from the streamlined body, the form of the shock wave is - 

Let us denote by a subscript 1 the parameters of the gas on that side of the 
shock wave surface that is directed toward the oncoming flow and let us denote 
by a subscript 2 the values of the parameters of the medium on the opposite side. 
By vn and VTwe denote the components of the velocity vector in the projections onto 
the normal and tangent to thq shock front respectively. Let us consider Wugoniot's 
conditions which must be satisfied on crossing the shock wave. As we lmow [71 , 
there are  four of these and, in the approximation that we are  malting, two con- 
ditions a re  automatically satisfied. Specifically, in accordance with the first of 
these, the pressure and density a re  adiabatically related to an accuracy of terms 
of second order of smallness: 

.- 

1 

The second of these conditions is that the pressure behind the shock front 
be expressed in terms of the pressur,? ahead of i t  with the aid of Bernoulli's 
integral, which holds also for the description of discontinuous motion. Further- 
more, the product of the two normal components of the velocity vector of gas 
particles obeys the condition [ 7 1 

By using th2 expansion (9) and making the specific enthalpy w, the independent 
thermodynamic variable, we have 

Finally, the last of the Eugoniot conditions simply reduces to the require- 
ment that the tangential component'of the velocity vector remain continuous on 
crossing the shock front. Obviously, this can be replaced by the condition that 
the potential itself be continuous. We have 
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The omitted terms in (10) affect only the determination of the functions 
cpLsli and fai with Q i  < -%. Wel'note that inclusion of the square terms in 
formula (10) is impossible in' the framework of adiabatic approximation. 

I 

In the region upstream from the shock front, the power w1 following wo in 
the expansion (5) is -6/7, according to E5, 61. Let us show that this solution 
corresponds to replacement, , in the first approximation, of the streamlined body 
by a dipole, if we use it also in the region behind the shock wave. To do this, 
let  us construct a control surface around the body and let us calculate the quantity . -  /168 
Q of gas that passes through this surface. The control surface shall be  a cylin- 
drical surface of radius r whose generators are parallel to the x-axis. Then, 

Turning to the expansion (5), we easily find 

, _I_ . -  

Let us look a t  the first of the integrals in (13). To get an estimate for it, 
we first of all iake into account the fact that the equation of the shock front is 
simply E =&. We have 

If we now let the radius of the control cylindrical surface approach infinity, 
the e ression that we have written will also approach infinity a t  the same rate 
as r 2? under the condition that X # 0. 

The realization of such a Situation would indicate that the streamlined body 
introduces perturbations into the oncoming flow, and that the perturbations result 
in infinite gas flow through any surface surrounding the flow. Of course, the 
perturbations from a finite body cannot be this strong. Therefore, it is 
necessary that I = 0. 

* $ 8  I * 
Later, we shall make this estimate more precise. 

* 

5 



To check this assertion, let us partitior, . ~1 integral I into two parts: 
I 

Here, the coordinate of the shock wave E = s calculated in accordance 
with the remark made above regarding the first rcoximation [ 2, 31, In 
formulas (7 ) ,  let us shift to the new parameter ' ,  y2 5/12(1 - ri) and let us set  
61 = 5"/712'I77-' ,  

Then, the limiting characteristics of the flov.. 5 the first approximation 
will correspond to 
f-2/7 

e q = 1. A new parametric rqxesentation of the function 
in the region situated in front of the shock front  is written 

For the region behind the shock wave, a differed substitution, namely, 
6 = -'//12(1$- &), is more convenient. As a resuli of this substitution, we have 

I 

12c + 5 E z= bg% 7cf, , fa/, = 2G7-sb~/.Z;117(12~a -p 152; - 25), 

Let us satisfy conditions (10) and (11) , which must hold upon passage through 
the shock wave. The requirement of continuity of the potential with 
to the equation fell7, 2 = f-%# I, whereas the relationship between the normal com- 
ponents of the velocity vector yields 

= E2 leads 

From this we can easily obtain the values of the parameters q = q2' and 
&,corresponding to the shock wave front. In accordance with 161 , we have f 

- _--_ - . __ -- . 

q 2  12-'(p13 Jr112); . r;Z cs: 12-'(713 12), ' &2 2*3'/7(13 . .  - 1)'/7. ' 
. .  

~ _ _  ._ . I " -__ - I 

At the same time, we determine the quantities 

Thus, as g,'ranges from -a3 to E2, the parameter q increases monotonically 
from 0 to q2.  AS,^ ranges from g2 to +a, the parameter decreases monotonically 
from -I I;z to 0.' Let us now substitute the representation (14) of the function f -2/7 
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into the expresgion for the integral I1. When we do this, we obtain 

An analogous transformation of the integral I2 based on formulas (15) leads 
to the value I 

\ 

As one can easily see, the two values obtained are equal in magnitude but 
opposite in sign. It follows from this that I=O. In accordance with the calcu- 
lations that we have made, we can obtain from (13) the estimate Q - 7 4 7 .  En 
this estimate, we take into consideration the fact that the form of shock wave 
differs from that of the curve E = E2.- By letting the radius of the control cylin- 
drical surface become infinite, we conclude that Q = 0. If the number w 

following w in the expansion (5) is equal to -6/7, the flow around a finite body 
takes place according to the scheme corresponding to a perturbation of the 
original uniform flow by a dipole. Specifically, as  is well known 171, behind 
the streamlined body there forms an eddy wake due to the presence of dissipative 
processes in an actual medium. If we assume that the gas is nonviscous and 
thermally nonconducting, we can calculate this accompanying wake by adding the 
singularities introduced by, the source to in the flow scheme. In such a scheme, 
obviously, Q # 0. A s  is easily shown, one can satisfy the above-mentioned re- 
quirement by setting mi  = -&/-I, and (02 = -O/I.I in the expansion (5). It follows 
from 15, 61 that the function must be identically equal to zero in the region 
in front of the shock wave because otherwise the flow velocity' field would have 
singularities on its limiting characteristics. Consequently, to obtain a singu- 
larity of the source type, yve need to take .q1-4/~ _- + 0 in the region behind the front 
of the shock wave. Attention was first !paid to such a possibility in E 9 1 in a study 
of plane-parallel transonic flows. 

1 
0 

Substitution of the expansion (5) into theoriginal equations of motion (1) 
leads to a linear differential equation for the function f-4,7. This equation is 
homogeneous: 

7 



The differential equation for the function f is found to be nonhomogeneous: -6/7 
I 

.... . -  . '  

To make more precise the description of the velocity field for purpose of 
determination of the form of the shock wave, ,we can no longer confine ourselves 
to the simple equation = $2. We take the equation of the front in the form 

a $1 I 
I - - - ..__ - 

(19) 
- ,  - 

When we satisfy, the condition of continuity of the potential on crossing 
of the shock wave, we obtain first the equktion 

' I  

and then the equation 

I .  . .  

.i 

which the values of the function f 
discontinuity. Let us look'at the unit normal n to the shock front, with com- 
ponents n and n along the x- and r-axes, respectively. To calculate the com- 

ponent Cn = v~n, -4- urn, of the velocity vector, we need, in the first approximation, - /171 

must obey on both sides of the surface of -6/7 

X r 

1 to know only 

Turning to the bounday condition ( lo) ,  we easily derive the equation 

On the other hand, the relationship between the first derivatives of the function 
on the'two sides of the surface of discontinuity takes the form f-6/7 
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We shall now deal with the transformation of the equations (20) and (221, 
which give the values of the function f 
wave. zf we eliminate the constant cl. from them, we get 

and its first derivative on the shock 4 7  

From this differential equation, we now eliminate the second derivatives of 
the function f by means of Eq. (6), which applies to both sides of the surface 
of discontinuity. Keeping condition (16) in mind, we find 

-2/7 

1 

~"-% 2 + d 2 f - J f , ,  1 64 
dg2 , dg2 = 

, - -  

after which it is easy to obtain the desired formula 

Let us now follow by integrating equation (17), rewriting it in the following 
form: 

I .  

It follows from (24) that the constant of integration must be 0. A second 
integration yields I 

' -  

(25) 

a I .  l 

/172 where the constant A is proportional to the coefficient c1 in the expansion (19) - 
for the wave fvonk 
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Let us now establish a relationship between the constant A and the gas flow 
Q. When we substitute the expansion (5) into formula (12), we see immediately 
that integration of the function r i l q ~  ,,,/ ilr yields a finite value independent of the 
radius of the cylindrical coqtrol surface. For 0- ,I,# 0 the integral I in Eq. (13) 

2/7 is of the order r-'2/7. The product r I remains constant a s  r-+ 00 and I 4  0, 
On the other hand, if cp-'/t = 0, then I - 7 - 4 7  and f'7I - 1 - 4 7  4 0 as we increase 
without bound the radius of the control surface. The estimates we have given do 
not contradict the calculations which were made earlier and according to which 
the integral I vanishes identicdly. The point is that, when we make the description 
of the velocity field of the flow more precise, the form of the shock wave must be 
given by the more precise relation (19) rather than by the simple equation % = %2. 

As a result, the gas flow is 
1 

By using the boundary conditions (20), let us transform this expression to the 
form 

which is entirely determined ;by the values of the function f 
derivative. Also, we find 

and its first  -4/7 
i 

-. - 
-Q=-- 8 49 np*u* (2rn,)%,'l7 [2-'/83-'/*7'/* (f3 - 1) + 51 A.  

I 

Let us now see about integrating (18). One can easily see that the desired 
solution fE?/, of the homogeneous equation corresponding to it is 

B = const. 

To see this, let us recall Eq. (6), which the function f must satisfy. Dif- 

ferentiating it with respect to %, we see that Eq. (26) is valid. A s  was mentioned 
f51 , we may, without loss of generality, take the constant B = 0 in the region 
upstream from the wave front. This is true because the original partial 

-2/7 

10 



differential equation (1) is invariant with respect to shift along the x-axis. 
Keeping this fact in mind, let us take the basic singularity in the expansion (5) 
not at the coordihate origin but at  some point x = x0 on the (r = o)-axis. men,  /173 - 

Comparison of (26) with this equation shows that 
_-_ 

B = (2~~.)"1axo. 

whose derivatives 
determine the right-hand member of Eq. (18), is nonzero only in the region behind 
the shock wave. For B = 0, the function f is also nonzero in that region but -6/7 
i t  vanishes identically upstream from the shock front. Under condition (21), the 
quantity f-s,,, I = 0. Also, under condition (23), the derivative df-e,,, / clg = 0. 

-4/7' If xo = 0, then the constant B is also 0. The function f 

To obtain a solution of the nonhomogeneous Eq. (18), it is convenient to use 
as the independent variable in all the transformations the parameter &, rather 
than 1. When we substitute the representation (15) of the function f-2/7 into 
formula (26) and set  B = 2-172b3f/? for convellience, we obtain 

In accordance with Liouville's formula, we find a second linearly independent 
solution of the homogeneous equation corresponding to (18). Let us adopt the 
notation f-t. for it. Then, simple calculations yield 

, 
Y 

The transformation to the independent variable 5 in the integral (25) enables 
us to evaluate i t  in closed form: 

The right-hand member of equation (18) is 



NOW, it is easy to write the desired solution of the nonhomogeneous equation 
(18). Let us  denote by 

49 
t 10 

' W a I QV*<'~ (c + f)-'J* (GQ; -L +)-I * 

I 

the Wronskian of the linearly independent integrals (27) and (28). Fo r  the region 
downstream from the shock front, we obtain 

/174 - When we finally transform to the parameter 5 in both integrals, we need to 
know the expression for the difference 

I 

It remains to satisfy conditions (21) and (23) on the front of the shock wave. 
vanishes identically = 0, the function f -4/7 -6/7 Firs t  of all, we note that, for f 

not only in the reQon in front of the shock wave, but also in the region behind 
it. In other words, the representation (26) automatically takes care of the 
boundary conditioqs on the wave front. Let us  now eliminate from (21) and (23) 
the constant c2. We substitute into the relationship so obtained the integral 
(29). This yields 

.- 

C = ~2-'"J~~3-"~~05-~7''J~ (97-567/3) '17 (1901)13 - 2413) A2, 
. (  

These last expressions lead to the equation 
. -  $ = ~'J~3"'1105~7'~/6(3;113 - 5)'/7(.77 70913 - 136 669)AZ. 

Let us investigate the asymptotic behavior of the components of the velocity 
vector close to the axis of symmetry. By letting r approach zero in our solution, 
we have, for x < OJ 
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Here, the constants dl, dZ,. . , , d a re  easily determined from the numerical 
values of the parameters already used but, because of their cumbersomeness, 
we shall not write our their explicit expressions. The expansion (30) cor- 
responds to the basic singularity of %/?. The discarded terms in it a re  of a 
higher order of smallness than those left in (31) since cp-'~, = <p-*17 = 0. in the 
region in frontof the front of the shock wave. The constants d and d a re  pro- 
protional to the coefficient Coin the solution (29). With regard to the integral 
terms in the solution shown, their contribution to the perturbation of the velocity 
field a s  r e 0  is, f o r x >  0, 

8 

5 8 

zir - a. - ?x4, , l;,. - rx-5. 

In conclusion, let us look'briefly at  the relationships between the integral 
that we have found for Eq. (1) and the resistance force Fx acting on the body. As 
we know E71 , a portion Ff  of that force is associated with the loss  of momentum 
in the eddy wake of the body. Another portion F;', called the wave resistance, 
can be found by calculation of ]the x-component of the momentum of the gas 

surface. Obviously, F ,  = F /  Jr FX". The principal contribution in F; is given 
by the integration of the basic, singularity Q-=/,, from which we get a simple esti- 
mate as  r-+'oo: 

X 

/175 transported by the perturbations (per unit time) through the cylindrical control - 

I 

Thus, there will be no wave resistance when the flow around the body has 
the critical velocity. There will be wave resistance only at  strictly supersonic 
velocities. This very result was established recently in 101 , where dissipative 
processes were taken into account in a real gas. The origin of a resistive force 
at the critical velocity is explained by the same reason as  in an incompressible 
fluid, namely, the fact that i t  i s  due to the displacement of the x-component of the 
momentum from the wake accompanying beyond the body. It is true that the flow 
can become eddy not only as  a result of intensive friction of the gas in the boun- 
dary layer and disruptions behind the object being studied, but also as a result of 
formation of shock waves (that are  by no means weak) close to the body. The pro- 
cess of heat transfer can also have an influence on the formation of a wake in a 
compressible gas, 

Displaccmcnt 01 momentum of a gas is always accompanied by a Ifdeficit" in 
the flow streamlining the body and flowing through a section of the accompanying 
wake [7, 101. If we consider a medium that is nonviscous and thermally noncon- 
ducting, the effect of this deficit on the external flow will apparently be equivalent 
to the effect due to a source of defiqte intensity. It follows from this that it is 
impossible to consider the resistance force without including the term with V-V7. 
in the expansion (5). When q q ,  = 0 ,  there will be a flow around a finite body and 
this flow does not encounter any resistaxice. In other words, from a purely formal 
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point of view, d'Alembertbs paradox remains even if the velocity is Mach 1 at 
infinity. In this las t  case, the scheme of the flow corresponds to the interaction 
of a dipole with an originally uniform flow, 

In the asymptotic representation that we have derived for the damping of 
perturbations at great distances from a finite body, there is a one feature which 
is identical with the phenomenon observed during operation of a Lava1 nozzle in 
an undefined mode. The presence of limiting characteristics and shock waves 
resulting from them does not enable us to influence the mixed sub- and super- 
sonic flow ahead of the shock front by changing the conditions behind it. There- 
fore, the principal term in our solution is given by the same function v-~/?, 

regardless of whether it applies to a source or to a dipole. Therefore, the 
formation of a wake leads' only to a small change in the shape of the shock wave 
and the flow parameters behind it. The constant appearing in the determination 
of the function 'Q-,,, is in no way associated with the expenditure of the gas flow Q. 
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